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In the traditional static implementation literature it is often impossible for imple-
mentors to enforce their optimal outcomes. And when restricting the choice to
dominant-strategy implementation, only the dictatorial choices of one of the
participants are implementable. Repeated implementation problems are drastically
different. This paper provides a strong implementation ``folk theorem:'' for patient
implementors, every outcome function they care about is dominant-strategy implemen-
table. journal of Economic Literature Classification Numbers: C7, D7. � 1998

Academic Press

1. INTRODUCTION

Moving from static one shot environments to dynamic repeated ones can
enrich the implementation literature in several ways. This paper highlights
these possibilities by offering a formal detailed analysis of a simple example
that points to pronounced improvements.

In the one shot problem an implementor has to select a single social
alternative, from a set of feasible ones, that will be optimal relative to his
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own preferences and the unknown preferences of the members of a group
of participants. Since the participants' preferences are not known to him,
and since they may act strategically in supplying needed information, the
implementor has to find a method, or a game, whose strategic equilibrium
outcome has the desired optimality. It is well known that in many cases
this is an impossible task.1 The impossibility results obtained under dominant
strategy implementation turned researchers to Bayesian, Nash, or other
types of implementation.2

But, for many economic applications, imposing a one shot selection
procedure may be unduly restrictive. The problem of selecting a socially
optimal path of economic growth, for example, allows a move to dynamic
implementation where economic choices can be made repeatedly and
updated as feasible sets and information become available. An implementor
can also increase the set of feasible choices in a repeated static problem by
offering intertemporal solutions. For example, in a one shot procedure
designed to select a chairman of an economics department, the dean may
be restricted to the choice of a microeconomist or a macroeconomist. But
in a repeated selection problem, she can consider solutions that alternate
between micro- and macroeconomists in consecutive periods.

Even from a purely technical point of view, the differences between a one
shot implementation and a dynamic one can be substantial.3 One major
factor lies with the ability to learn people's preferences by observing their
past choices. While this is impossible in one shot implementation it is
essentially unavoidable in repeated interaction. The learning can be done
by the implementor as well as by the players observing each other and the
implementor's past choices.

It is, however, not clear a priori whether repetition and learning makes
implementation easier or harder. Consider for example the problem of deter-
mining socially optimal levels of individual contributions to the problem of
cleaning air pollution.4 In an attempt to free ride on the contribution of
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1 The following papers, and their references, describe some major studies: Arrow [1],
Barbera and Jackson [3], Dasgupta, Hammond, and Maskin [5], Gibbard [9], Hurwicz
[11], Hurwicz and Walker [12], Ledyard [17], Moore [18] and Satterthwaite [24].

2 See Groves and Ledyard [10], Jackson [13], Myerson [19], and Postelwaite and
Schmeidler [21].

3 This is to be expected, given the folk theorems of infinitely, see for example Rubinstein
[23], and finitely, see Friedman [6] and Benoit and Krishna [4], repeated games. More
closely related, however, are well known works on repeated games with incomplete informa-
tion and reputation, for example Aumann and Maschler [2], Kreps et al. [16], Neyman
[20], Fudenberg and Maskin [7], and Fudenberg and Levine [8]. The feature of these
papers, that early reputation is built to be enjoyed throughout the duration of the game, takes
on a different form when an uninformed, but poweful, implementor is brought into the picture.

4 An interesting take on this problem can be found in Rangel [22] where he looks at public
goods in an overlapping generations model.



others, agents who wish to be charged a little are likely to exaggerate down
the importance of this undertaking. However, if too many agents do so,
society may end up with polluted air which does not reflect the true preferen-
ces of its members. If the decision on optimal contributions were done
repeatedly, it is not clear whether such inefficiency could persist. After some
time society's members would learn that the air did not get cleaned, and
the free riders would have an informative reason to offer contributions.
But now sophisticated rational agents, knowing that others will eventu-
ally learn, may have an even stronger incentive to ``teach'' their opponents
that they do not care with the hope that the opponents will give in
first.

As the above example suggests, closely related to the issue of learning is
the issue of time preference. It is quite likely that the levels of patience of
the agents and the implementor will have a significant influence on the out-
come of the interaction. Of particular interest to us is the difference in the
patience rates between the social implementor and the economic agents.
Our intuition is as follows. (1) Without learning by the planner, all implemen-
tation must be done as, or is equivalent to, one shot implementation even
in problems that admit intertemporal solutions such as the growth model
or sequential candidate choice. (2) If agents also do not learn or if they are
extremely impatient, then we are constrained to Bayesian implementation.
(3) If agents do learn, the results of Kalai and Lehrer [15] and others tell
us they will eventually play a Nash equilibrium in the true environment. So
even if the planner does not learn, if the planner is patient enough then
Nash implementation may be possible. (4) Somewhat surprisingly, we will
show below that if the planner learns and is more patient than the agents,
then we can achieve dominant strategy implementation, making it irrele-
vant whether the agents learn or not. (5) What we don't yet have a feel for
is what happens if all learn but some agents are more patient than the
planner, although an infinitely impatient planner is probably restricted to
the equivalent of a sequence of one shot implementations.

In this paper we prove a result that illustrates how significant these
issues may be. Our purpose in presenting it is not to supply a general
model, but rather to illustrate the power of the phenomenon. For that
reason, we keep this example as elementary and simple as possible. In
particular, we show how patience on the part of the implementor can help
her in overcoming the information extraction problem. When we take it to
an extreme, where she is only interested in doing things right in the long
run, as compared to the economic agents who perform time discounting,
we see that dominant strategy implementation becomes limitless. This is in
striking contrast to the Gibbard [9] and Satterthwaite [24] theorem that
shows that in a one shot problem, dominant strategy implementation can
only be used to implement dictatorial choices.
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We are able to get this strong implementation result, using a strictly
dominant strategies equilibrium, in a simple direct revelation game involv-
ing a single type-declaration move at an initial stage. Using the revelation
principle, this saves us from having to write a general model with a discus-
sion of a variety of equilibrium options. But less severe assumptions and a
search for necessary conditions, as opposed to our sufficient one, will
undoubtedly require significantly more modeling involving notions of Nash
and�or Bayesian implementation. The revelation principle will still hold for
Bayesian implementations, and the type of revelation game we use in the
next section could continue to be a useful tool for the analysis of implementa-
tion in more complex environments.

Finally, we have made the analysis quite simple by restricting the number
of players' types to be finite and by considering stationary environments.
This paper is meant to illustrate a fundamental contrast between repeated
and one shot implementation. Attempts by us to obtain similar results
under the most general conditions would only cloud the issues by turning
this into a learning, rather than an implementation, paper. We note, however,
that the inference used in our simple mechanism is a special case of Bayesian
learning, and we refer the interested reader to papers of Jordan [14] and
Kalai and Lehrer [15] for more powerful generalizations.

2. PATIENT IMPLEMENTATION BY DOMINANT STRATEGIES

The Environment

A, with generic elements a, b, denotes a set of social alternatives.

N, with generic elements i, j, denotes a finite set of economic agents.

3i , with generic elements % i , denotes a finite set of player i types.

3=_i 3 i , with generic elements %, denotes the set of type profiles.

ui (%i , a) denotes the utility of a player i from the alternative a when
he is of type %i .

A� is the set of infinite sequences of social alternatives. For each

a� # A�, we write a�=(a1, a2, ..., at, ...).

$i , a real number between 0 and 1, denotes the discount parameter of
agent i:

ui (%i , a�)= :
�

t=1

$ t&1
i u i (%i , at).
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Repeated Implementation

An outcome function o assigns to each type profile % an outcome sequence
o(%) # A�.

Since, for our purpose, revelation games and dominant strategy equi-
libria are sufficient, we restrict the notions of implementations to these
cases.

A revelation game form g is a function assigning an outcome sequence to
each (reported) type profile %, i.e., for every % g(%) # A�.

The revelation game g dominance-implements the outcome function o if
for each type profile %,

1. for each agent i, %i is a dominant strategy in the game induced by
g and by %, and

2. g(%)=o(%).

In this paper, we restrict attention to perfectly patient planners. That is,
we assume throughout that if there are two outcome functions g(%) and
h(%) and a time T such that g(%)t=h(%)t for all t>T then the planner is
indifferent between g and h. Such a planner cares only about eventual
implementation. It is sufficient, for example, that the planner's utility func-
tion be V=limT � � (1�T ) �T

1 v(at). With this in mind, we can relax the
concept of dominance-implementation.

The revelation game g patiently dominance-implements the outcome
function o if for each type profile %,

1. each %i is a dominant strategy as above, and

2. for some time T, g(%)t=o(%)t for all t>T.

If we can find a game g that patiently dominance-implements the out-
come function o we say that o is patiently dominance implementable.

As we will see below, a patient planner can rely on revealed preference
to extract all relevant information from the players without worrying about
incentive compatibility. This, however, requires a simple condition that
says that the different types of a player are sufficiently different.

We say that types are separable in the environment if for every player i
and for every distinct types %i and %� i there is a pair of social alternatives
a and b in A with ui (%i , a)<ui (%i , b) and ui (%� i , a)>u i (%� i , b).

An example of violation of separability is when a player i has two types,
%i and %� i , with type %i being completely indifferent between all the social
alternatives and type %� i not being completely indifferent (a more detailed
discussion of this condition is offered in the sequel). The power of the
assumption that types are separable is given by the following theorem.
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Theorem. In a types separable environment with bounded utility functions,
every outcome function is patiently dominance implementable.

Proof. Given the outcome function o, we will construct the function g
with the following two properties:

(Uniform) eventual coincidence with o. For some time T for all type
profiles % # 3 and all t>T, g(%)t=o(%)t.

Strict dominance of truthful revelation. For all type profiles % # 3 and
for every player i ui (%i , g(%1 , ..., %� i , ..., %n)) is uniquely maximized at %� i=%i .

We will select positive integers D1 , D2 , ..., Dn and C with the following
properties. The first D1 periods will represent player 1's tenure as a dictator.
This means that all social choices during this period, g(%)t for t=1, 2, ..., D1 ,
will depend entirely on %1 and be independent of %j with j{1. Similarly, the
next D2 periods will represent player 2's tenure as dictator, and so on.
Thus, each player in succession will receive a number of periods when only
his preferences dictate the social outcomes in a manner described below.

Following this sequential dictatorship phase of length D1+D2+ } } } +Dn ,
the subsequent C periods represent a cooling down phase. The social choices
during these periods will be independent of %. For example, a constant
alternative a, which is the same for all %, will be repeated C times.

We let W be the waiting time, denoting the length of the initial phase
consisting of all the dictatorships and the cooling down period, W=D1+
D2+ } } } +Dn+C. Following this initial segment we define the period of
eventually ``doing the right thing'' by g(%)t=o(%)t for t=W+1, W+2, ... .
Notice that the first desired property, eventual coincidence of g and o, is
thus satisfied if % is revealed correctly.

The selection of social choices during the dictatorship phase of player i
is described as follows. Let the length of the dictatorship phase, Di , be the
number of unordered pairs of distinct types of player i and let p1, p2, ..., pDi

be a fixed enumeration of these pairs. For each pq let (aq, bq) be an ordered
pair of social alternatives separating the pair of types of pq, and let Li=
D1+D2+ } } } +Di&1 denote the last period prior to player i 's dictatorship.
For q=1, 2, ..., Di define g(%)Li+q to be the preferred choice between aq

and bq, according to %i if ui (%i , aq){u i (%i , bq). Otherwise, let g(%)Li+q=aq.
If player i 's true type is %i , then reporting %� i {% i will strictly decrease his

total payoff during his dictatorship. During all the periods Li+q in which
he is really indifferent between aq and bq he is also indifferent between the
social choices resulting from reporting %i and reporting %� i . In periods of no
indifference he can only lose by switching from %i to %� i . And at least in one
period, the one corresponding to the pair [%i , %� i], he strictly loses by
reporting %� i .
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Since player i does not affect the social outcomes during the dictatorships
of the other players, player i also strictly maximizes his own utility during
the entire sequential dictatorships phase by reporting his true type.

The purpose of the cooling down period is to keep this strict preference
for true revelation for the entire game. By counting on the discounting of
the players, we can make the duration of the cooling down time, C, suf-
ficiently long that all the discounted utility received after the cooling down
period is meaningless in comparison to the strict preferences established
during a person's tenure as a dictator. Since the number of player types is
finite, and since %i was the unique maximizer of a player's utility during his
dictatorship, C can be chosen to be finite and still satisfy the uniform even-
tual coincidence with o. Q.E.D.

While the theorem and proof above were selected mainly to make the
presentation of the message simple, we foresee possible improvements in
both the statement of the theorem and the constructed mechanism. For this
purpose the following comments may be useful.

3. ON THE CONDITION OF TYPE SEPARABILITY

As usual in Bayesian settings, different types of a player may stand for
different preferences, but they may also stand for different information. For
example, a player i may be of two types, one type possessing private infor-
mation that the state of the environment is in a set A, with the other type
possessing the information not in A. Assume further that, despite the dif-
ferent information, the two types have identical preferences over the social
alternatives. In this case the types are not separable, and our mechanism
would fail if we wish to implement different social alternatives for these two
types.

Another failure of separability occurs when two types of a player are
identical in all their ordinal selections among pairs of socially feasible alter-
natives, but the intensity of their preferences is different. Consider, for
example, the following allocation problem. In each period there is one unit
of a perishable indivisible item to be allocated to either player 1 or player 2.
Formally, the social choices in each period are (1, 0) or (0, 1), indicating
the player that receives 1 unit and the player that receives 0 units of the
item. Each player may be of two types: one that highly values the item, %i ,
and another type, %� i , that has a low, even if positive, value for the item.
Formally, let u1(%1 , (1, 0))=2, u1(%� 1 , (1, 0))=1, and u1(%1 , (0, 1))=
u1(%� 1 , (0, 1))=0, with similar types %2 and %� 2 defined for player 2.

The implementor desires to implement the following outcome function. If
one of the players is of the high type and the other is of a low type, the

314 KALAI AND LEDYARD



item should be given repeatedly to the high-type player. If both players are
of the same type, the item should be given to player 1 on even periods and
to player 2 on odd periods.

It is easy to see that this outcome function cannot be implemented and
that the type-separation condition fails. If the implementor could introduce
another social alternative to create separation it would work. For example,
if he could offer some temporary private good whose utility to the low
types was greater than 1 and to the high types was smaller than 2, he could
separate their types by giving them dictatorial choices involving the
separating temporary good early on, and later doing the ``right thing.''

4. SIMPLER RANDOMIZING MECHANISMS

If the implementor can randomize in making choices, simpler mechanisms
work. The following random-dictator revelation mechanism is an example.

In an initial period, each player i announces a type %i . Then, in the first
step, the implementor randomly chooses a player i and one of this player's
separating pairs of alternatives (from the earlier constructions) pq=(aq, bq).
The selected social alternative is aq or bq according to the strict preference
of the reported %i (make it aq if %i is indifferent between the two). To obtain
the strict dominance result it is enough now to generate a long cooling off
phase as before, and follow it for all periods t afterwards by selecting o(%)t.

A second and, perhaps, better alternative for the cooling off phase is to
use the same alternative aq or bq, chosen for the first period, and to make
it the repeated social selection for many periods. This strengthens the
incentives of impatient players to reveal correctly, resulting in a shorter
cooling off phase.

5. ON THE PATIENCE OF THE IMPLEMENTOR

First conceptually, the assumption of patient implementor may be more
suitable to implementation problems within organizations. For example the
dean of a school may be interested in the long run performance (or the
evaluation by others of how he contributed to the long run performance)
of the school, while the faculty members may be taking a shorter time
horizon in their individual optimization problems. But in social implemen-
tation, for example in constitutional design, the assumption of patient
implementor with impatient participants is more questionable and should
be a subject for further study.
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From a technical viewpoint, our construction was very wasteful and in
specific applications one may assume much less than perfect patience, depend-
ing on the nature of the outcome function and the extent of diversity
among types. For example, in the extreme case that the participants are
completely myopic the random-dictator mechanism described above strictly
dominance implements any outcome function from period 2 on, without
the need for a cooling off phase.
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